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Abstract

For finite coverings in euclidean d-space Ed we introduce a parametric density function. Here
the parameter controls the influence of the boundary of the covered region to the density.

This definition gives an new approach to covering which is similar to the approach for packing
in [BHW]. In this way we obtain a unified theory for finite and infinite covering and generalize
similar results for d = 2 developed by various authors since 1950 to all dimensions.

1 Introduction

Infinite packing and covering, in particular lattice packing and covering of euclidean d-space Ed by
spheres or other convex bodies is an important and well established part of mathematics. But all
packings and coverings in real world are finite. So a theory of finite packing and covering is desirable.
This theory should of course comprise the infinite theory as a limiting case. Starting from the usual
definition of packing and covering density (cf. e.g. [GL] or [R]), one is led to packings and coverings of
a convex bodies with respect to another “large” convex body. These restricted packings and coverings
(in the case of packings usually called “bin packings”) have been studied by various authors (cf. [GW]
or [K]).

In many situations there is no natural large body associated to the packing or covering. A natural
way of denotation of this type of packing or covering is “free” packing or covering. A way to measure
the quality of these free packings and coverings is to measure the volume or other functional of some
associated convex body.

About 1950 Rogers, Bambah, L. Fejes Tóth, Hadwiger, Zassenhaus and later Groemer,
Oler, Woods, Witsenhausen, Folkman, Graham, G. Wegner et al. introduced such free
packings and coverings (cf. [GW]). These authors showed for d = 2 various relations between classical
infinite packing and covering and free packing and covering. But the work of these authors was
restricted to the plane.

A first step to Ed was by L. Fejes Tóth’s famous sausage conjecture that for d ≥ 5 linear
arrangements of balls have minimal volume of the convex hull under all arrangements of the same
cardinality. By its nature the work stimulated by the sausage conjecture (cf. again [GW]) had no
connection to the theory of infinite packing and covering. For packing in [BHW 1], see also [BHW
2] a parametric density function was introduced, such that for small values of the parameter sausage
packings are optimal while for large values of the parameter the classical density of infinite packings
was obtained as limit of the finite optimal densities. In fact the method used there was strong enough
to prove the sausage conjecture for almost all dimensions. In this paper we show that a suitable
generalization of the parametric density gives a theory of free finite covering which comprises the
classical definition of covering as a limiting case for suitable parameters. Altogether we obtain a
relation between free finite packing and free finite covering which is analogous to the infinite case:

1



“Small” values of the parameter lead to lowdimensional packings and highdimensional coverings while
“large” parameters lead to highdimensional packings and lowdimensional coverings (though sausages
are never optimal coverings).

2 Definitions

Let Kd, d ≥ 2 denote the set of convex bodies K with volume V (K) > 0 in euclidean d-space Ed.
For K ∈ Kd and c1, . . . , cn ∈ Ed let Ki = K + ci, i = 1, . . . , n and Cn = {c1, . . . , cn}. We call Cn an
arrangement and define the density function of this arrangement by

Θ(K, Cn, ρ) = nV (K)/V (convCn + ρK) (1)

where ρ ∈ R is a parameter. For ρ ≥ 0 convCn + ρK denotes the usual Minkowski sum and for
ρ < 0 the Minkowski difference (cf. [S] p. 133–137 or [GW] p. 877), sometimes also called the inner
parallel body (cf. [S] p. 134). The Minkowski difference has various applications in convex geometry
(cf. [S] p. 137 and 350) and is defined by

convCn + ρK = {x ∈ Ed | x + |ρ|K ⊂ convCn} for ρ < 0. (2)

In particular we have, if convCn −K 6= ∅: (convCn −K) + K ⊂ convCn. The minimal ρ, for which
convCn + ρK 6= ∅, is called the inradius ρ(convCn,K) of Cn with respect to K. In the following we
always assume tacitly ρ > ρ(convCn,K). Finally, if convCn + ρK = ∅ we set Θ(K, Cn, ρ) = ∞. By
our definition clearly Θ(K, Cn, ρ) > 0 for all convex bodies, arrangements and parameters.

While the definition of density pertains to arbitrary arrangements and could in fact easily be gener-
alized to arrangements of congruent copies of K, we are here interested in more specific arrangements,
so we define:

a) If int(Ki ∩Kj) = ∅ for i 6= j, then Cn is a packing.

b) If convCn ⊂ Cn + K, then Cn is a covering.

c) If Cn is a packing and a covering, then Cn is a tiling.

Of course one is interested in optimal arrangements, in particular densest packings and thinnest
(most economical) coverings. This leads for given K ∈ Kd, n ∈ N and ρ ∈ R to:

δ(K, n, ρ) = sup{Θ(K, Cn, ρ) | Cn packing} (3)

ϑ(K, n, ρ) = inf{Θ(K, Cn, ρ) | Cn covering} (4)

δ(K, ρ) = lim sup
n→∞

δ(K, n, ρ) (5)

ϑ(K, ρ) = lim inf
n→∞

ϑ(K, n, ρ) (6)

As δ(K, n, ρ) = ∞ for ρ ≤ 0 we consider δ(K, n, ρ), δ(K, ρ) only for ρ > 0.
If an arrangement Cn is of the form Cn = (convCn) ∩ L for some lattice L ⊂ Ed, then we call Cn

a lattice arrangement. For lattice packings and coverings we define the lattice densities: δL(K, n, ρ),
ϑL(K, n, ρ), δL(K, ρ), ϑL(K, n) analogously to (3) to (6).

Finally in the theory of finite packings sausages take an important part. We say that the arrange-
ment Cn is a sausage, if it is of the form Cn = {iu|u ∈ Ed, |u| 6= 0, i = 1, . . . , n}. We observe that for
small |u| Cn yields a covering, while for large |u| it yields a packing.
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3 Results

While we treat coverings in this note we state some of the results on packings as well to show that for
finite packing and covering holds an analogous complementarity as in the infinite case.

The density has the following simple properties:

Proposition 1 (a) ϑ(K, n, ρ) > 0 and ϑ(K, ρ) > 0,

(b) ϑ(K, n, ρ) ≥ 1 and ϑ(K, ρ) ≥ 1 for ρ ≤ 0

(c) ϑ(K, n, ρ) and ϑ(K, ρ) are invariant under affine mappings of Ed.

The following result links for all d ≥ 2 finite coverings and the classical density ϑ(K) of thinnest
coverings of Ed by translates of K (cf. [R] or [FK] or [GW]).

Theorem 2 For K ∈ Kd, ρ ≤ −(d + 1) and for K ∈ Kd, K = −K ρ ≤ −2 holds

ϑ(K, n, ρ) ≥ ϑ(K), n ∈ N ϑ(K, ρ) = ϑ(K).

Theorem 3 (BHW 1) For K ∈ Kd, ρ ≥ d + 1 and for K ∈ Kd, K = −K, ρ ≥ 2 holds

δ(K, n, ρ) ≤ δ(K), n ∈ N δ(K, ρ) = δ(K).

Theorem 4 For K ∈ Kd, ρ ≤ −d and for K ∈ Kd, K = −K, ρ ≤ −1 holds

ϑL(K, n, ρ) ≥ ϑL(K), n ∈ N ϑL(K, ρ) = ϑL(K).

Theorem 5 (H) For K ∈ Kd, ρ ≥ (3/2)(d + 1), for K ∈ Kd, K = −K, ρ ≥ 3 and for K = Bd,
ρ ≥

√
21/2 holds

δL(K, n, ρ) ≤ δL(K), n ∈ N δL(K, ρ) = δL(K).

Remark: Most of the bounds for ρ especially in Theorems 2, 4 seem to be far best from possible.
The theorems above show that parametric finite covering (parametric finite packing) gives for small

ρ (large ρ) a new approach to infinite covering (infinite packing). Thus small parameters for covering
correspond to large parameters for packing. On the other hand there appears to be no straightforward
correspondence between large parameters for covering and small parameters for packing. The role of
sausages in the theory of finite packings is demonstrated by the following theorem (cf. [BHW 1,
BHW 2]) which we state here only in a qualitative way.

Theorem 6 (BHW 1) For every dimension d there is a constant cd > 0 such that for all K ∈ Kd,
all n ∈ N and all ρ ≤ cd, δ(K, n, ρ) = δ(K, Sn, ρ) for a suitable sausage Sn.

The following propostion shows that the situatation for coverings is different:

Proposition 7 For all n, d, ρ with ρ > 0, d ≥ 2, n ≥ 3 ϑ(Bd, n, ρ) > ϑ(Sn, ρ).

The lack of a counterpart of Theorem 6 leaves a certain gap in the theory of finite covering in the
following sense: By Theorem 6 we have a tight upper bound for δ(K, Cn, ρ) for all sufficiently small ρ.
This corresponds to a lower bound for ϑ(K, Cn, ρ) for large ρ. The following Theorem partially closes
this gap:
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Theorem 8

ϑ(K, n, ρ) ≥
{

dd(2d(1 + ρ)d−1 +
1
n

ρd)
}−1

Corollary 9
2(2d)−1(ρ + 1)−(d−1) ≤ ϑ(K, ρ) ≤ e(ρ + 1)−(d−1) ρ ≥ 0

We close with a look at two-dimensional covering. For two-dimensional parametric packing den-
sities there holds the following alternative which in a certain sense solves the problem for centrally
symmetric bodies: Up to a constant ρ0 depending only on the body δ(K, n, ρ) is given by a sausage
and for all ρ > ρ0 the density is less than the density of the densest infinite packing (cf. [BHW 1]).
This results depends on a result of Oler [O]. There is a counterpart to Oler’s Theorem by Bambah,
Rogers and Zassenhaus. Though their result is optimal it is of little help in our context, as their
condition is of a combinatorial rather than metrical nature.

Here we can only give a metrical counterpart to Oler’s theorem for circles, which is a counterpart
of a theorem of Groemer [G] for packing and as such of some interest in its own. From this we derive
a theorem for finite covering by circles which is at least asymtotically (with respect to n) sharp. To
state the theorem we define for a configuration Cn the number H(Cn) of its “boundary points” by
H(Cn) = card(Cn ∩ bd convCn) and we use the constants

α =
√

2
4

((
4 +

√
17
)2/3

− 1
)3/2

√
4 +

√
17

= 0.6578.. , β =
1

2
√

1− α2
− 4

√
3α

9
= 0.1574.. ,

γ = 4− 8α

3
√

3
− (2α + 2)β = 2.465.. .

Theorem 10 Let Cn ⊂ E2 be a covering set. Then

i.
n ≥ 2

3
√

3
V2(convCn) + 1/2H(Cn) + 1.

There are infinitely many n and Cn such that equality holds in (10).

ii.
n ≥ 2

3
√

3
V2(convCn) + βV1(convCn) + 1

Further for every n ≥ 5 there is a Cn such that n ≤ 2
3
√

3
V2(convCn) + βV1(convCn) + γ.

Remarks:

1. Of course the first part of the theorem is just a special case of the Theorem of Bambah, Rogers
and Zassenhaus. We have included a proof as most of our proof is the same as the second part
of the theorem and probably somewhat simpler than the general case.

2. The examples in the second part show that the coefficients of V2, V1 cannot be improved. A
single point shows that the constant 1 cannot be improved. The examples have the shape of
bones, which indicates that probably the role of sausages in finite packing is taken by bones in
covering (cf. [GW]).

The immediate consequence of Theorem 10 for finite covering is

Corollary 11 For all ρ ≤ 3
√

3
4 β ϑ(B2, n, ρ) > ϑ(B2) and for all ρ ≥ 3

√
3

4 β + εn ϑ(B2, n, ρ) < ϑ(B2)
for some sequence {εn} with εn → 0.
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4 Proof of the statements for general d

The proof of Theorem 2 is based on the following idea: assume that convCn + ρK is a finite covering
with ϑ(K, n, ρ) < ϑ(K). Then a packing lattice Λ of convCn+ρK with elementary cell Z is chosen. For
every x ∈ Z the lattice packing L(convCn +ρK +x) = {(convCn +ρK +x)+ g | g ∈ Λ} is superposed
on a densest infinite covering {K + a | a ∈ C(K)} with density ϑ(K). Further all K + a, a ∈ C(K)
which meet L(convCn + ρK + x) are deleted, where ρ ≤ −2 and (2) guarantee that we obtain again
a covering of Ed.

A standard averaging argument with respect to x shows the existence of an infinite covering
of translates of K with density less than ϑ(K) which contradicts the definition of ϑ(K). Hence
ϑ(K, n, ρ) ≥ ϑ(K). The proof gives a careful analysis of this idea:

Assume there exist K ∈ Kd and ρ ≤ −2 satisfying the assumption and an integer n with
ϑ(K, n, ρ) < ϑ(K). Then there is an Cn ∈ Cn and an ε > 0 with

ϑ(K) =
nV (K) + εϑ(K)
V (convCn + ρK)

. (7)

Let Λ be a packing lattice of convCn + ρK. We may assume that convCn + ρK is contained in a
fixed elementary cell Z of Λ. From (7) follows easily(

1− V (convCn + ρK)
det(Λ)

)
ϑ(K)

det Λ
det(Λ)− ε

+
nV (K)

det(Λ)− ε
= ϑ(K). (8)

Now for λ > 0 let Wλ ∈ Kd
0 be the cube of edge length 2λ. Apparently there is a constant µ

depending only on Z such that for every λ > 0 there is a subset Lλ ⊂ Λ such that Wλ + Z ⊂ Lλ + Z
and Lλ + 2Z ⊂ Wλ+µ.

By the definition of ϑ(K) for every λ > 0 there exists a set Cm(λ) ∈ Cm(λ)(K) such that Cm(λ)+K ⊃
Wλ and

lim
λ→∞

m(λ)V (K)
V (Wλ

) = ϑ(K).

Obviously limλ→∞ V (Wλ+µ)/V (Wλ) = 1, so there exist a ζ > 0 and a set Cm(ζ) ∈ Cm(ζ)(K) with
Cm(ζ) + K ⊃ Wζ such that

ϑ(K)
det Λ

det Λ− ε
>

m(ζ)V (K)
V (Wζ+µ)

and
nV (K)

det(Λ)− ε
>

nV (K)card(Lζ)
V (Wζ+µ)

(9)

For every x ∈ Z we construct a finite covering Cn(x) ∈ Cn(x) – for a suitable n(x) ∈ N – with
Cn(x) + K ⊃ Wζ+µ in the following way:

Cn(x) = {x + Lζ + Cn} ∪ {y ∈ Cm(ζ) | y 6∈ x + Lζ + (convCn + ρK)}.

Now (?) and ρ ≤ −2 guarantee that Cn(x) is a covering. While it is difficult to determine the
cardinality n(x) of Cn(x) for fixed x it is easy to calculate

∫
x∈Z n(x)dx as follows:

For every y ∈ Cm(ζ) let χy(x) = 1 for y 6∈ x + Lζ + convCn + ρK and χy(x) = 0 else. Then

∫
x∈Z

n(x)dx =
∫

x∈Z

ncard(Lζ) +
∑

y∈Cm(ζ)

χy(x)

 dx

= n det(Λ)card(Lζ) + m(ζ) (det(Λ)− V (convCn + ρK)) .
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So there is a z ∈ Z with

n(z) ≤ m(ζ)
(

1− V (convCn + ρK)
det(Λ)

)
+ ncard(Lζ)

or
n(z)V (K)
V (Wζ+µ)

≤ m(ζ)V (K)
V (Wζ+µ

(
1− V (convCn + ρK)

det(Λ)

)
+

nV (K)card(Lζ)
V (Wζ+µ

From (8) and (9) follows
n(z)V (K)
V (Wζ+µ)

< ϑ(K). (10)

But Cn(z) + K ⊃ Wζ+µ and thus (10) contradicts the definition of ϑ(K).
Proof of Theorem 4: First we show the assertion for 0-symmetric convex bodies K ∈ Kd. To this

end let fK denote the distance function of K and for a d-dimensional lattice L ⊂ Ed let

H(K, L) := {x ∈ Ed : fK(x) ≤ fK(x− a), a ∈ L}

be the honeycomb (Wabenzelle) of K with respect to L (cf. [Gr], [GL]). Further we denote by µ(K, L)
the inhomogeneous minimum of K for the lattice L (cf. [GL]). The inhomogeneous mimimum is closely
related to the honeycomb. Namely, with respect to the metric given by a distance function fK , µ(K, L)
may be considered as the circumradius of H(K, L), that is

µ(K, L) = min{ρ ∈ R>0 : H(K, L) ⊂ ρ ·K}. (11)

Now let K ∈ Kd, K = −K, L be a covering lattice of K and let Cn = (convCn)∩L be a finite lattice
arrangement with respect to K. We claim

V (conv(Cn)− µ(K, L)K) ≤ n · det(L). (12)

First we assume that K is strictly convex, i.e. for x, y ∈ K, and λ ∈ (0, 1) the points λx + (1 − λ)y
are inner points of K. In this case H(K, L) is a well-defined starbody which generates a lattice tiling
of the space (cf. [H]). Hence

V (H(K, L)) = det(L)

and for (12) it suffices to prove

convCn − µ(K, L)K ⊂ Cn + H(K, L).

Let x /∈ Cn + H(K, L). Then there exists a z ∈ L with z /∈ convCn and x ∈ z + H(K, L), which
implies by the 0-symmetry of H(K, L): z ∈ x + H(K, L) and thus z ∈ x + µ(K, L)K (cf. (11)). Since
z /∈ convCn we get x /∈ convCn − µ(K, L)K.

Now let K be an arbitray 0-symmetric convex body. There exists a sequence {Ki} of 0-symmetric
strictly convex bodies with K ⊂ Ki and Ki → K as i tends to infinity (cf. [BF, pp. 35]). We may
assume that 0 is an inner point of conv(Cn) − µ(K, L)K. Then it is easy to see that for suitable
numbers εi > 0, εi → 0, i →∞, and sufficiently large i holds

(1− εi) · (convCn − µ(K, L)K) + µ(Ki, L)Ki ⊂ convCn.

Hence we find

V (convCn − µ(K, L)K) ≤ (1/(1− εi))dV (convCn − µ(Ki, L)Ki)
≤ (1/(1− εi))dn · det(L).
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Since L is a covering lattice we have µ(K, L) ≤ 1 and so by (12)

V (convCn −K) ≤ n · det(L).

By the definition of ϑL(K) this yields ϑL(K) ·V (convCn−K) ≤ n ·V (K) for any finite lattice covering
arrangement Cn. Thus

ϑL(K) ≤ ϑL(K, n,−1). (13)

On account of (???) we obtain ϑL(K,−1) = ϑL(K).
Finally let K ∈ Kd. Since ϑ(K, n, ρ), ϑ(K, ρ) are invarinat with respect to affine transformations

(cf. Proposition 1) we may assume that the centroid of K is the origin. Hence (cf. [BF, p. 34, p. 73])

K ⊂ d

d + 1
(K −K) ⊂ dK

So if L is a lattice covering of K then it is also for the 0-symmetric convex body (d/(d+1)) · (K−K).
Now let Cn as above. It follows

nV (K)
V (convCn − dK)

=
V (K)

V (d/(d + 1)(K −K))
· nV ((d/(d + 1)(K −K))

V (convCn − dK)

≥ V (K)
V (d/(d + 1)(K −K))

· nV ((d/(d + 1)(K −K))
V (convCn − d/(d + 1)(K −K))

≥ V (K)
V (d/(d + 1)(K −K))

· V (d/(d + 1)(K −K))
det(L)

=
V (K)
det(L)

≥ ϑL(K).

Proof of Proposition 7: As Θ(Bd, Sn, ρ) = ∞ for ρ ≤ 0 we have to find for every n, d and ρ > 0 a
covering Cn such that V (conv(Cn) + ρBd) > V (conv(Sn) + ρBd). For simplicity this is only done for
odd n = 2k + 1 but the examples are easily modified for even n.

We have V (conv(Sn)+ρBd) = 2(n−1)κd−1ρ
d−1 +κdρ

d. For any covering Cn we have by Steiner’s
formula for ρ ≥ 0

V (conv(Cn) + ρBd) = V0(convCn)κdρ
d + V1(convCn)κ1ρ

d−1 + . . . + Vd(convCn),

where Vi denotes the i-th intrinsic volume (cf. e.g. [S] p. ?). Specifically for a 2-dimensional set
convCn, V2(convCn) is the area, V1(convCn) is half the perimeter, V0(convCn) = 1 and Vi(convCn) = 0
for i > 0.

For all n, d, ρ the examples Cn consist of points of suitably chosen triangles: Let ε ∈ R such that
0 < ε < 1 and s = 2

√
1− ε2. The points of Cn have the form xi = (is, iε/k, 0, . . . , 0), i = 0, . . . , k,

xi = (is, (2 − i/k)ε, 0, . . . , 0), i = k + 1, . . . , 2k. It is easily checked that for all ε, n the Cn form a
covering.

We find

V ((convCn) + ρBd) = κdρ
d + V1(convCn)κd−1ρ

d−1 + V2(convCn)κd−2ρ
d−2

≥ κdρ
d + 4k

√
1− ε2κd−1ρ

d−1 + 2kε
√

1− ε2κd−2ρ
d−2

> κdρ
d + 4kκd−1ρ

d−1 = V ((convSn) + Bd)

if ε is chosen appropriately.
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Proof of Theorem 8: Let K ∈ Kd. After a suitable affine transformation we have by John’s theorem
(cf. [???]) 1

dBd ⊂ K ⊂ Bd. So for given n ∈ N and ρ ≥ 0 we obtain by Steiner’s formula:

ϑ(K, Cn, ρ) = nV (K)/V (convCn + ρK) ≥ nκd/

(
dd

d∑
i=0

Vd−i(convCn)κiρ
i

)
.

With Vd−i(convCn) ≤ nV(d− i)(Bd), I = 0, . . . , d follows

ϑ(K, Cn, ρ) ≥
{

dd

(
d−1∑
i=0

(
d

d− i

)
κi

κd−i
ρi +

1
n

ρd

)}−1

.

Further simplifications ????? qed

Proof of the corollary: ????

5 Proof of the twodimensional results

We need some more notation for our proofs: We write B(x) rather than B2 + x and for x1, . . . , xn

we write [x1, x2] for the line segment joining x1 and x2 and [x1, . . . , xn] for the polygon with vertices
x1, . . . , xn (in this order). While the polygons considered here will generally not be convex they will
always be topological disks.

We begin our proof by stating some simple general lemmas:

Lemma 12 Let x, y, z ∈ E2 such that ∆ = [x, y, z] ⊂ B(x) ∪B(y) ∪B(z). Then V (∆) ≤ 3
√

3/4 and
equality holds for an equilateral triangle with edge-length

√
3.

Proof: Immediate consequence of the densest lattice packing of circular discs.

Lemma 13 Let Q = [a, b, c, d] be a quadrangle, such that [b, c], [a, d] are parallel and [a, d], [b, c]
are perpendicular on [c, d]. Further let Q ⊂ B(a) ∪ B(b) and |c − d| = β. Then V (Q) ≤ V (Q′)
where Q′ is a quadrangle with the same properties as Q and, additionally, |a − d| = |b − d| and
|a− (c + d)/2| = |b− (c + d)/2| = 1.

Proof: We may assume |a− d| = α, |b− c| = α + δ, δ ≥ 0, β =
√

1− α2 +
√

1− (α + δ)2. Then it is
clearly sufficient to show, that the quadrangle with

|a− d| = α + δ/2, |b− c| = α + δ/2, δ ≥ 0, β =
√

1− α2 +
√

1− (α + δ)2.

is covered by B(a) ∪B(b). This follows from

2
√

1− (α + δ/2)2 −
√

1− (α + δ)2 −
√

1− α2 ≥ 0

which is easily checked by differentiation with respect to δ. qed

Now let Cn be a finite covering. As Rogers] [R] for infinite coverings by balls in arbitrary
dimension we construct the Delaunay triangulation of convCn: For a in Cn we note by D(a) its
Voronoi cell D(a) = {x ∈ E2 | |x − a| ≤ |x − b| for all b ∈ Cn}. We join a, b ∈ Cn if D(a) and
D(b) have a common edge. If the resulting tesselation of convCn is not a triangulation we take an
arbitrary triangulation of every n-gon for n ≥ 4 which introduces no additional vertices (a n-gon
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is thus subdivided in n − 2 triangles). We observe that for every triangle [a, b, c] of the Delauney
triangulation D(a), D(b), D(c) have a common vertex.

We say that [a, b] is edge of convCn if [a, b] is line segment of the triangulation that is contained in
only one triangle. An edge [a, b] is called a long edge, if [a, b]∩D(c) 6= ∅ for a c ∈ Cn \ {a, b}. For each
long edge [a, b] we construct a polygon Q(a, b) = [d1, . . . , dn] in the following way: Let d1 = a, dn = b
and let the other dn be determined by the following properties: D(di) ∩D(di − 1) is a line segment
and D(di) ∩ [a, b] 6= ∅. For every vertex di of Q[a, b] we denote by p(di) the orthogonal projection of
di on aff[a, b].

Lemma 14 Q(a, b) is a (generally) nonconvex polygon, such that for i = 1, . . . , n− 1 [di, di+1] is an
edge of the triangulation and [di, di+1, p(di+1), p(di)] ⊂ B(di + 1) ∪B(di).

Proof: By construction [di, di+1] is an edge of the triangulation. Further [a, b] ⊂
⋃n

i=1 B(di). Now the
lemma follows from easy elementary considerations. qed

Lemma 15 Let [a1, a2, a3] be a triangle of the triangulation such that [a1, a2, a3] 6⊂ B(a1) ∪ B(a2) ∪
B(a3). Then there is a long edge [p, q] of P such that [a1, a2, a3] ⊂ Q(p, q).

Proof: Let b ∈ [a1, a2, a3] \ (B(a1) ∪ B(a2) ∪ B(a3) and c = D(a1) ∩D(a2) ∩D(a3). We have by
our construction 1 < min{|b − ai|} ≤ |c − ai| = min{|x − c| | x ∈ Cn}. As Cn is a covering set, this
gives c 6∈ convCn. This gives bd convCn ∪D(ai) 6= ∅ for i = 1, 2, 3. As we have again by construction
that conv{a1, a2, a3, y} contains no element of Cn in its interior, the sets D(ai)∪bd convCn, i = 1, 2, 3
must be contained in one long edge of convCn. qed

Proof of Theorem 10: If T denotes the number of triangles in the triangulation we have n =
T/2 + H/2 + 1. By lemmas 15, 12 we have for every triangle ∆ of the triangulation which is not
contained in any Q(a, b) 2

3
√

3
A(∆) ≤ 1/2. Further we have that for a long edge [a, b] of P that

Q(a, b) = [d1, . . . , dn] contains n − 2 triangles of the triangulation. For a fixed Q(a, b) we define
Qi = [di, di+1, p(di+1), p(di)]. Thus Q1 and Qn−1 are triangles and Qi, i = 2, . . . , n−2 are quadrangles.

To prove (i) it remains to show

2
3
√

3
A(Qi) ≤ 1/2, i = 2, . . . , n− 2;

2
3
√

3
A(Qi) ≤ 1/4, i = 1, n− 1. (14)

For i = 2, . . . , n− 2 we may assume

|di − p(di)| = |di+1 − p(di+1)| = α, |p(di)− p(di+1)| = 2
√

1− α2

by lemma 13. Thus A(Qi) = 2α
√

1− α2. A(Qi) becomes maximal for α =
√

2/2 and in this case we
have A(Qi) = 1 and inequality (14) is clearly satisfied. Q1 is a rectangular triangle with right angle
at p(d2) and |d2 − p(d2)| = α ≤ 1. Thus A(Q1) ≤ α(1 +

√
1− α2)/2. Differentiation with respect to

α gives immediately that A(Q1) becomes maximal for α =
√

3/2 and A(Q1) ≤ 3
√

3/8. Thus (14) is
again satisfied. Qn−1 is treated in the same way. Suitable portions of the thinnest infinite covering
show that equality holds in infinitely many cases.

To prove (ii) it remains to show

2
3
√

3
A(Qi) +

d

2
|p(di)− p(di+1)| ≤ 1/2, i = 1, . . . , n− 1 (15)
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for long edges [a, b].
The first case is trivial, as clearly 2d ≤ 1/2. In the other case we may assume by lemma 13

|di − p(di)| = |di+1 − p(di+1)| = α, |p(di)− p(di+1)| = 2
√

1− α2

for i = 2, . . . , n− 2 and we have to show

4
3
√

3
α
√

1− α2 + d
√

1− α2 ≤ 1/2 for 0 ≤ α ≤ 1.

This inequality is certainly satisfied by

d = min{ 1
2
√

1− α2
− 4

3
√

3
α | 0 ≤ α ≤ 1}. (16)

By using elementary calculus we find that the minimum is attained at

α0 =

√
8− 3

(−4+
√

17)
1
3

+ 3
(
−4 +

√
17
) 1

3

2
3
2

= 0.6578.. .

Insertion of this value in 16 shows inequalty 15. For i = 1, d it is easily checked that inequality 15
holds with strict inequality.

While the proof shows that for (2) equality only holds for cardX = 1, the following exam-
ple shows that the value of d is best possible: Let β0 = 2

√
1− α2

0. Now for natural n let X =
{x1, . . . , xn, xa, xb, xc, xd} with xi = ((i−1)β0, 0), i = 1, . . . , n, xa = (−β0, α0), xb = (−β0,−α0), xc =
((n + 1)β0, α0), xd = ((n + 1)β0,−α0). If P = convX is dissected as in the proof of the theorem, we
obtain 2(n − 1) quadrangles Qi such that equality holds in inequality 15 and 6 additional triangles.
qed

Proof of Corollary 11: Let Cn be an arbitrary covering with 2-balls. Then

Θ(B2, Cn, ρ) =
πn

V ((convCn) + ρB2)
≥

π
(

2
3
√

3
V2(convCn) + βV1(convCn) + 1

)
V2(convCn) + 2ρV1(convCn) + πρ2

=
2π

3
√

3
V2(conv(Cn) + 3

√
3

2 V1(convCn) + 3
√

3
2

V2(convCn) + 2ρV1(convCn) + πρ2

>
2π

3
fr ρ ≤ 3

√
3

4
β.

In the same way the examples from Theorem 10 give the estimate for large ρ, such that in fact it
is easy to give effective εn. qed

6 References

[BR] R.P. Bambah and C.A. Rogers, Covering the plane with convex sets, J. London Math. Soc. 27
(1952) 304–314.

10



[BRZ] R.P. Bambah, C.A. Rogers and H. Zassenhaus, On covering with convex domains, Acta Arithm.
9 (1964) 191–207.

[BW] R.P. Bambah and A.C. Woods, On plane coverings with convex domains, Mathematika 18 (1971)
91–97.

[BHW1] U. Betke, M. Henk and J.M. Wills, Finite and infinite packings, J. reine angew. Math. (to
appear).

[BHW2] U. Betke, M. Henk and J.M. Wills, Sausages are good packings, (in preparation).

[BF] T. Bonnesen and W. Fenchel, Theorie der konvexen Krper, Springer Berlin ( 1934)
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